{ "id": "1309.1975", "version": "v2", "published": "2013-09-08T16:38:54.000Z", "updated": "2014-02-07T06:36:58.000Z", "title": "Expansion in finite simple groups of Lie type", "authors": [ "Emmanuel Breuillard", "Ben Green", "Robert Guralnick", "Terence Tao" ], "comment": "78 pages, 2 figures. This is the final version, incorporating referee comments", "categories": [ "math.GR", "math.CO" ], "abstract": "We show that random Cayley graphs of finite simple (or semisimple) groups of Lie type of fixed rank are expanders. The proofs are based on the Bourgain-Gamburd method and on the main result of our companion paper, establishing strongly dense subgroups in simple algebraic groups.", "revisions": [ { "version": "v2", "updated": "2014-02-07T06:36:58.000Z" } ], "analyses": { "subjects": [ "20G40", "20N99" ], "keywords": [ "finite simple groups", "lie type", "simple algebraic groups", "random cayley graphs", "establishing strongly dense subgroups" ], "note": { "typesetting": "TeX", "pages": 78, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1975B" } } }