{ "id": "1309.1940", "version": "v1", "published": "2013-09-08T08:37:32.000Z", "updated": "2013-09-08T08:37:32.000Z", "title": "Sobolev homeomorphisms and Brennan's conjecture", "authors": [ "Vladimir Gol'dshtein", "Alexander Ukhlov" ], "comment": "8 pages", "categories": [ "math.FA" ], "abstract": "Let $\\Omega \\subset \\mathbb{R}^n$ be a domain that supports the $p$-Poincar\\'e inequality. Given a homeomorphism $\\varphi \\in L^1_p(\\Omega)$, for $p>n$ we show the domain $\\varphi(\\Omega)$ has finite geodesic diameter. This result has a direct application to Brennan's conjecture and quasiconformal homeomorphisms. {\\bf The Inverse Brennan's conjecture} states that for any simply connected plane domain $\\Omega' \\subset\\mathbb C$ with nonempty boundary and for any conformal homeomorphism $\\varphi$ from the unit disc $\\mathbb{D}$ onto $\\Omega'$ the complex derivative $\\varphi'$ is integrable in the degree $s$, $-2 2$ is not possible for domains $\\Omega'$ with infinite geodesic diameter.", "revisions": [ { "version": "v1", "updated": "2013-09-08T08:37:32.000Z" } ], "analyses": { "keywords": [ "sobolev homeomorphisms", "inverse brennans conjecture", "infinite geodesic diameter", "poincare inequality", "direct application" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1940G" } } }