{ "id": "1309.1760", "version": "v1", "published": "2013-09-06T18:35:26.000Z", "updated": "2013-09-06T18:35:26.000Z", "title": "Hypercyclicity and k-Transitivity (k>=2) for abelian semigroup of affine maps on C^n", "authors": [ "Yahya N'Dao" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1309.1725", "categories": [ "math.DS" ], "abstract": "In this paper, we prove that the minimal number of affine maps on C^n, required to form a hypercyclic abelian semigroup on C^n is n+1. We also prove that the action of any abelian group finitely generated by affine maps on C^n, is never k-transitive for k>=2.", "revisions": [ { "version": "v1", "updated": "2013-09-06T18:35:26.000Z" } ], "analyses": { "keywords": [ "affine maps", "hypercyclicity", "k-transitivity", "hypercyclic abelian semigroup", "minimal number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1760N" } } }