{ "id": "1309.1348", "version": "v3", "published": "2013-09-05T13:50:32.000Z", "updated": "2015-09-06T06:22:28.000Z", "title": "Gaussian measures on the of space of Riemannian metrics", "authors": [ "Brian Clarke", "Dmitry Jakobson", "Niky Kamran", "Lior Silberman", "Jonathan Taylor", "Yaiza Canzani" ], "comment": "16 pages; Final version submitted to journal per NSERC open access policy", "categories": [ "math.DG", "math.PR" ], "abstract": "We introduce Gaussian-type measures on the manifold of all metrics with a fixed volume form on a compact Riemannian manifold of dimension $\\geq 3$. For this random model we compute the characteristic function for the $L^2$ (Ebin) distance to the reference metric. In the Appendix, we study Lipschitz-type distance between Riemannian metrics and give applications to the diameter, eigenvalue and volume entropy functionals.", "revisions": [ { "version": "v2", "updated": "2013-12-20T07:53:57.000Z", "title": "The manifold of metrics with a fixed volume form", "abstract": "We study the manifold of all metrics with the fixed volume form on a compact Riemannian manifold of dimension $\\geq 3$. We compute the characteristic function for the $L^2$ (Ebin) distance to the reference metric. In the Appendix, we study Lipschitz-type distance between Riemannian metrics, and give applications to the diameter and eigenvalue functionals.", "comment": "14 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-09-06T06:22:28.000Z" } ], "analyses": { "subjects": [ "57R25", "58B20", "58D17", "58D20", "58J50", "60G60", "53C21" ], "keywords": [ "riemannian metrics", "gaussian measures", "compact riemannian manifold", "study lipschitz-type distance", "volume entropy functionals" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1348C" } } }