{ "id": "1309.1175", "version": "v3", "published": "2013-09-04T20:09:13.000Z", "updated": "2014-09-16T18:46:55.000Z", "title": "Exceptional Charlier and Hermite orthogonal polynomials", "authors": [ "Antonio J. Duran" ], "categories": [ "math.CA" ], "abstract": "Using Casorati determinants of Charlier polynomials, we construct for each finite set $F$ of positive integers a sequence of polynomials $r_n^F$, $n\\in \\sigma_F$, which are eigenfunction of a second order difference operator, where $\\sigma_F$ is an infinite set of nonnegative integers, $\\sigma_F \\varsubsetneq \\NN$. For certain finite sets $F$ (we call them admissible sets), we prove that the polynomials $r_n^F$, $n\\in \\sigma_F$, are actually exceptional Charlier polynomials; that is, in addition, they are orthogonal and complete with respect to a positive measure. By passing to the limit, we transform the Casorati determinant of Charlier polynomials into a Wronskian determinant of Hermite polynomials. For admissible sets, these Wronskian determinants turn out to be exceptional Hermite polynomials.", "revisions": [ { "version": "v2", "updated": "2013-10-17T11:21:27.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2014-09-16T18:46:55.000Z" } ], "analyses": { "subjects": [ "42C05", "33C45", "33E30" ], "keywords": [ "hermite orthogonal polynomials", "finite set", "casorati determinant", "second order difference operator", "exceptional charlier polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1175D" } } }