{ "id": "1309.1109", "version": "v1", "published": "2013-09-04T17:17:00.000Z", "updated": "2013-09-04T17:17:00.000Z", "title": "Qualitative properties of a nonlinear system involving the $p$-Laplacian operator", "authors": [ "Françoise Demengel" ], "comment": "29 pages, no figure", "categories": [ "math.AP" ], "abstract": "In this article we consider the nonlinear system involving the $p$-Laplacian $$\\left\\{\\begin{array}{lc} |u^\\prime |^{p-2} u^{\\prime \\prime} = u^{p-1} v^p& |v^\\prime |^{p-2} v^{\\prime \\prime} = v^{p-1} u^p&\\ {\\rm on} \\ \\R, u\\geq 0, v\\geq 0& \\end{array}\\right.$$ for which we prove symmetry, asymptotic behavior and non degeneracy properties. This can help to a better understanding to what happens in the $N$ dimensional case, for which several authors prove a De Giorgi Type result under some additional growth and monotonicity assumptions.", "revisions": [ { "version": "v1", "updated": "2013-09-04T17:17:00.000Z" } ], "analyses": { "subjects": [ "B50" ], "keywords": [ "nonlinear system", "laplacian operator", "qualitative properties", "non degeneracy properties", "giorgi type result" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.1109D" } } }