{ "id": "1309.0906", "version": "v8", "published": "2013-09-04T03:46:36.000Z", "updated": "2015-02-11T22:56:45.000Z", "title": "The Abundancy Index of Divisors of Odd Perfect Numbers - Part II", "authors": [ "Keneth Adrian P. Dagal", "Jose Arnaldo B. Dris" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "A positive integer $M$ is said to be almost perfect if $\\sigma(M) = 2M - 1$, where $\\sigma(x)$ is the sum of the divisors of $x$. If $N$ is odd and $\\sigma(N) = 2N$, then the odd perfect number $N$ is said to be given in Eulerian form if $N = {q^k}{n^2}$ where $q$ is prime with $q \\equiv k \\equiv 1 \\pmod 4$ and $\\gcd(q,n) = 1$. In this article, we show that $q^k$, $n$, $qn$ and $n^2$ are not almost perfect. This then implies that the following inequalities hold: $$I(q) \\leq \\frac{2(q - 2)}{q},$$ $$I(n) \\leq \\frac{2n - 2}{n},$$ $$I(qn) \\leq \\frac{2qn - 2}{qn},$$ and $$I(n^2) \\leq \\frac{2n^2 - 253}{n^2},$$ where $I(x) = \\sigma(x)/x$ is the abundancy index of $x$. Lastly, we show that $$I(n^2) < \\frac{2n}{n + 1}$$ if and only if $q < n$.", "revisions": [ { "version": "v7", "updated": "2013-11-01T04:44:59.000Z", "abstract": "A positive integer $M$ is said to be almost perfect if $\\sigma(M) = 2M - 1$, where $\\sigma(x)$ is the sum of the divisors of $x$. If $N$ is odd and $\\sigma(N) = 2N$, then the odd perfect number $N$ is said to be given in Eulerian form if $N = {q^k}{n^2}$ where $q$ is prime with $q \\equiv k \\equiv 1 \\pmod 4$ and $\\gcd(q,n) = 1$. In this article, we show that $q^k$, $n$, $qn$ and $n^2$ are not almost perfect. This then implies that the following inequalities hold: $$I(q) \\leq \\frac{2(q - 2)}{q},$$ $$I(n) \\leq \\frac{2n - 2}{n},$$ $$I(qn) \\leq \\frac{2qn - 3}{qn},$$ and $$I(n^2) \\leq \\frac{2n^2 - 253}{n^2},$$ where $I(x) = \\sigma(x)/x$ is the abundancy index of $x$.", "comment": "18 pages", "journal": null, "doi": null }, { "version": "v8", "updated": "2015-02-11T22:56:45.000Z" } ], "analyses": { "subjects": [ "11A05", "11J25", "11J99" ], "keywords": [ "odd perfect number", "abundancy index", "eulerian form", "inequalities hold", "positive integer" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.0906D" } } }