{ "id": "1309.0133", "version": "v1", "published": "2013-08-31T16:36:38.000Z", "updated": "2013-08-31T16:36:38.000Z", "title": "The (7,4)-conjecture in finite groups", "authors": [ "Jozsef Solymosi" ], "categories": [ "math.CO", "math.GR" ], "abstract": "The first open case of the Brown, Erd\\H{o}s, S\\'os conjecture is equivalent to the following; For every $c>0$ there is a threshold $n_0$ so that if a quasigroup has order $n\\geq n_0$ then for every subset of triples of the form $(a,b,ab),$ denoted by $S,$ if $|S|\\geq cn^2$ then there is a seven-element subset of the quasigroup which spans at least four triples of the selected subset $S.$ In this paper we prove the conjecture for finite groups.", "revisions": [ { "version": "v1", "updated": "2013-08-31T16:36:38.000Z" } ], "analyses": { "keywords": [ "finite groups", "first open case", "seven-element subset", "quasigroup", "sos conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1309.0133S" } } }