{ "id": "1308.6717", "version": "v1", "published": "2013-08-30T11:58:45.000Z", "updated": "2013-08-30T11:58:45.000Z", "title": "Hamiltonian Cycle in Semi-Equivelar Maps on the Torus", "authors": [ "Dipendu Maity", "Ashish Kumar Upadhyay" ], "comment": "18 pages", "categories": [ "math.CO", "math.GT" ], "abstract": "Semi-Equivelar maps are generalizations of Archimedean solids to the surfaces other than 2-sphere. There are eight semi-equivelar maps of types $\\{3^{3},4^{2}\\}$, $\\{3^{2},4,3,4\\}$, $\\{6,3,6,3\\}$, $\\{3^{4},6\\}$, $\\{4,8^{2}\\}$, $\\{3,12^{2}\\}$, $\\{4,6,12\\}$, $\\{6,4,3,4\\}$ exist on the torus. In this article we show the existence of Hamiltonian cycle in each semi-equivelar map on the torus except the map of type $\\{3,12^{2}\\}$. This result gives the partial solution to the conjecture which is given by Gr$\\ddot{u}$nbaum \\cite{grunbaum} and Nash-Williams \\cite{nash williams} that every 4-connected graph on the torus is Hamiltonian.", "revisions": [ { "version": "v1", "updated": "2013-08-30T11:58:45.000Z" } ], "analyses": { "subjects": [ "52B70", "05C45", "52C38", "G.2.2" ], "keywords": [ "semi-equivelar map", "hamiltonian cycle", "archimedean solids", "partial solution", "generalizations" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.6717M" } } }