{ "id": "1308.6518", "version": "v1", "published": "2013-08-29T16:48:16.000Z", "updated": "2013-08-29T16:48:16.000Z", "title": "Tonelli Lagrangian systems on the 2-torus and topological entropy", "authors": [ "Jan Philipp Schröder" ], "comment": "38 pages, 4 figures", "categories": [ "math.DS" ], "abstract": "We study Tonelli Lagrangian systems on the 2-torus in energy levels above Ma\\~n\\'e's strict critical value and analyize the structure of global minimizers in the spirit of Morse, Hedlund and Bangert. In the case where the topological entropy of the Euler-Lagrange flow on the fixed energy level vanishes, we show that there are invariant tori for all rotation vectors indicating integrable-like behavior on a large scale. On the other hand, using a construction of Katok, we give examples of reversible Finsler geodesic flows with vanishing topological entropy, but having ergodic components of positive measure in the unit tangent bundle.", "revisions": [ { "version": "v1", "updated": "2013-08-29T16:48:16.000Z" } ], "analyses": { "keywords": [ "topological entropy", "study tonelli lagrangian systems", "rotation vectors indicating integrable-like behavior", "unit tangent bundle", "fixed energy level vanishes" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.6518S" } } }