{ "id": "1308.6420", "version": "v2", "published": "2013-08-29T10:25:20.000Z", "updated": "2013-12-14T12:04:23.000Z", "title": "Avoiding σ-porous sets in Hilbert spaces", "authors": [ "Michael Dymond" ], "categories": [ "math.FA" ], "abstract": "We give a constructive proof that any $\\sigma$-porous subset of a Hilbert space has Lebesgue measure zero on typical $C^{1}$ curves. Further, we discover that this result does not extend to all forms of porosity; we find that even power-$p$ porous sets may meet many $C^{1}$ curves in positive measure.", "revisions": [ { "version": "v2", "updated": "2013-12-14T12:04:23.000Z" } ], "analyses": { "keywords": [ "hilbert space", "lebesgue measure zero", "porous subset", "constructive proof", "porous sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.6420D" } } }