{ "id": "1308.5541", "version": "v1", "published": "2013-08-26T11:01:19.000Z", "updated": "2013-08-26T11:01:19.000Z", "title": "On the norming constants for normal maxima", "authors": [ "Armengol Gasull", "Maria Jolis", "Frederic Utzet" ], "categories": [ "math.PR" ], "abstract": "In a remarkable paper, Peter Hall [{\\it On the rate of convergence of normal extremes}, J. App. Prob, {\\bf 16} (1979) 433--439] proved that the supremum norm distance between the distribution function of the normalized maximum of $n$ independent standard normal random variables and the distribution function of the Gumbel law is bounded by $3/\\log n$. In the present paper we prove that choosing a different set of norming constants that bound can be reduced to $1/\\log n$. As a consequence, using the asymptotic expansion of a Lambert $W$ type function, we propose new explicit constants for the maxima of normal random variables.", "revisions": [ { "version": "v1", "updated": "2013-08-26T11:01:19.000Z" } ], "analyses": { "subjects": [ "60G70", "60F05", "62G32" ], "keywords": [ "norming constants", "normal maxima", "independent standard normal random variables", "distribution function", "supremum norm distance" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }