{ "id": "1308.5116", "version": "v1", "published": "2013-08-23T12:45:49.000Z", "updated": "2013-08-23T12:45:49.000Z", "title": "On the distribution of the zeros of the derivative of the Riemann zeta-function", "authors": [ "S. J. Lester" ], "comment": "18 pages", "categories": [ "math.NT" ], "abstract": "We establish an unconditional asymptotic formula describing the horizontal distribution of the zeros of the derivative of the Riemann zeta-function. For $\\Re(s)=\\sigma$ satisfying $(\\log T)^{-1/3+\\epsilon} \\leq (2\\sigma-1) \\leq (\\log \\log T)^{-2}$, we show that the number of zeros of $\\zeta'(s)$ with imaginary part between zero and $T$ and real part larger than $\\sigma$ is asymptotic to $T/(2\\pi(\\sigma-1/2))$ as $T \\rightarrow \\infty$. This agrees with a prediction from random matrix theory due to Mezzadri. Hence, for $\\sigma$ in this range the zeros of $\\zeta'(s)$ are horizontally distributed like the zeros of the derivative of characteristic polynomials of random unitary matrices are radially distributed.", "revisions": [ { "version": "v1", "updated": "2013-08-23T12:45:49.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11M50" ], "keywords": [ "riemann zeta-function", "derivative", "random unitary matrices", "random matrix theory", "real part larger" ], "tags": [ "journal article" ], "publication": { "doi": "10.1017/S0305004114000413", "journal": "Mathematical Proceedings of the Cambridge Philosophical Society", "year": 2014, "month": "Nov", "volume": 157, "number": 3, "pages": 425 }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014MPCPS.157..425L" } } }