{ "id": "1308.5028", "version": "v1", "published": "2013-08-23T02:04:19.000Z", "updated": "2013-08-23T02:04:19.000Z", "title": "Tight frames, partial isometries, and signal reconstruction", "authors": [ "Enrico Au-Yeung", "Somantika Datta" ], "categories": [ "math.FA" ], "abstract": "This article gives a procedure to convert a frame which is not a tight frame into a Parseval frame for the same space, with the requirement that each element in the resulting Parseval frame can be explicitly written as a linear combination of the elements in the original frame. Several examples are considered, such as a Fourier frame on a spiral. The procedure can be applied to the construction of Parseval frames for L^2(B(0,R)), the space of square integrable functions whose domain is the ball of radius R. When a finite number of measurements are used to reconstruct a signal in L^2(B(0,R)), error estimates arising from such approximation are discussed.", "revisions": [ { "version": "v1", "updated": "2013-08-23T02:04:19.000Z" } ], "analyses": { "subjects": [ "42C15" ], "keywords": [ "tight frame", "partial isometries", "signal reconstruction", "linear combination", "resulting parseval frame" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.5028A" } } }