{ "id": "1308.4320", "version": "v2", "published": "2013-08-20T14:31:26.000Z", "updated": "2014-06-23T10:09:43.000Z", "title": "Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum", "authors": [ "Jarosław Mederski" ], "comment": "To appear in Topol. Methods Nonlinear Anal", "categories": [ "math.AP" ], "abstract": "We study the following nonlinear Schr\\\"odinger equation $$-\\Delta u + V(x) u = g(x,u),$$ where V and g are periodic in x. We assume that 0 is a right boundary point of the essential spectrum of $-\\Delta+V$. The superlinear and subcritical term g satisfies a Nehari type monotonicity condition. We employ a Nehari manifold type technique in a strongly indefitnite setting and obtain the existence of a ground state solution. Moreover we get infinitely many geometrically distinct solutions provided that g is odd.", "revisions": [ { "version": "v2", "updated": "2014-06-23T10:09:43.000Z" } ], "analyses": { "subjects": [ "35Q55", "35J10", "35J20", "58E05" ], "keywords": [ "nonlinear schrödinger equation", "periodic potential", "nehari type monotonicity condition", "nehari manifold type technique", "right boundary point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.4320M" } } }