{ "id": "1308.3800", "version": "v1", "published": "2013-08-17T18:25:07.000Z", "updated": "2013-08-17T18:25:07.000Z", "title": "Integrable G-Strands on semisimple Lie groups", "authors": [ "François Gay-Balmaz", "Darryl D. Holm", "Tudor S. Ratiu" ], "comment": "17 pages, no figures. First version, comments welcome!", "categories": [ "math-ph", "math.MP", "nlin.SI" ], "abstract": "The present paper derives systems of partial differential equations that admit a quadratic zero curvature representation for an arbitrary real semisimple Lie algebra. It also determines the general form of Hamilton's principles and Hamiltonians for these systems and analyzes the linear stability of their equilibrium solutions in the examples of $\\mathfrak{so}(3)$ and $\\mathfrak{sl}(2,\\mathbb{R})$.", "revisions": [ { "version": "v1", "updated": "2013-08-17T18:25:07.000Z" } ], "analyses": { "keywords": [ "semisimple lie groups", "integrable g-strands", "arbitrary real semisimple lie algebra", "quadratic zero curvature representation", "paper derives systems" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/47/7/075201", "journal": "Journal of Physics A Mathematical General", "year": 2014, "month": "Feb", "volume": 47, "number": 7, "pages": "075201" }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014JPhA...47g5201G" } } }