{ "id": "1308.3769", "version": "v1", "published": "2013-08-17T09:36:19.000Z", "updated": "2013-08-17T09:36:19.000Z", "title": "Bounded quotients of the fundamental group of a random 2-complex", "authors": [ "Roy Meshulam" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "Let D denote the (n-1)-dimensional simplex. Let Y be a random 2-dimensional subcomplex of D obtained by starting with the full 1-skeleton of D and then adding each 2-simplex independently with probability p. For a fixed c>0 it is shown that if p=\\frac{(6+7c) \\log n}{n} then a.a.s. the fundamental group \\pi(Y) does not have a nontrivial quotient of order at most n^c.", "revisions": [ { "version": "v1", "updated": "2013-08-17T09:36:19.000Z" } ], "analyses": { "subjects": [ "55U10", "05C80" ], "keywords": [ "fundamental group", "bounded quotients", "nontrivial quotient" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.3769M" } } }