{ "id": "1308.3115", "version": "v2", "published": "2013-08-14T13:23:33.000Z", "updated": "2013-08-15T04:42:47.000Z", "title": "Positive radial solutions for coupled Schrödinger system with critical exponent in $\\R^N\\,(N\\geq5)$", "authors": [ "Yan-fang Peng", "Hong-yu Ye" ], "comment": "22 pages. arXiv admin note: text overlap with arXiv:1209.2522 by other authors. text overlap with arXiv:1209.2522 by other authors", "categories": [ "math.AP" ], "abstract": "We study the following coupled Schr\\\"odinger system \\ds -\\Delta u+u=u^{2^*-1}+\\be u^{\\frac{2^*}{2}-1}v^{\\frac{2^*}{2}}+\\la_1u^{\\al-1}, &x\\in \\R^N, \\ds -\\Delta v+v=v^{2^*-1}+\\be u^{\\frac{2^*}{2}}v^{\\frac{2^*}{2}-1}+\\la_2v^{r-1}, &x\\in \\R^N, u,v > 0, &x\\in \\R^N, where $N\\geq 5, \\la_1,\\la_2>0,\\be\\neq 0, 2<\\al,r<2^*,2^*\\triangleq \\frac{2N}{N-2}.$ Note that the nonlinearity and the coupling terms are both critical. Using the Mountain Pass Theorem, Ekeland's variational principle and Nehari mainfold, we show that this critical system has a positive radial solution for positive $\\be$ and some negative $\\be$ respectively.", "revisions": [ { "version": "v2", "updated": "2013-08-15T04:42:47.000Z" } ], "analyses": { "keywords": [ "positive radial solution", "coupled schrödinger system", "critical exponent", "ekelands variational principle", "mountain pass theorem" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.3115P" } } }