{ "id": "1308.2632", "version": "v2", "published": "2013-08-12T17:34:26.000Z", "updated": "2014-03-04T15:02:01.000Z", "title": "Polynomials for GL_p x GL_q orbit closures in the flag variety", "authors": [ "Benjamin J. Wyser", "Alexander Yong" ], "comment": "25 pages; v2 to appear in Selecta Math", "categories": [ "math.RT", "math.AG", "math.CO" ], "abstract": "The subgroup K=GL_p x GL_q of GL_{p+q} acts on the (complex) flag variety GL_{p+q}/B with finitely many orbits. We introduce a family of polynomials that specializes to representatives for cohomology classes of the orbit closures in the Borel model. We define and study K-orbit determinantal ideals to support the geometric naturality of these representatives. Using a modification of these ideals, we describe an analogy between two local singularity measures: the H-polynomials and the Kazhdan-Lusztig-Vogan polynomials.", "revisions": [ { "version": "v2", "updated": "2014-03-04T15:02:01.000Z" } ], "analyses": { "keywords": [ "orbit closures", "flag variety", "study k-orbit determinantal ideals", "local singularity measures", "borel model" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.2632W" } } }