{ "id": "1308.2452", "version": "v4", "published": "2013-08-12T03:10:32.000Z", "updated": "2014-06-22T22:06:29.000Z", "title": "Block Partitions of Sequences", "authors": [ "Imre Bárány", "Victor S. Grinberg" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "Given a sequence A=(a1,...,an) of real numbers, a block B of the A is either a set B={ai,...,aj} where i<=j or the empty set. The size b of a block B is the sum of its elements. We show that when 0<=ai<=1 and k is a positive integer, there is a partition of A into k blocks B1,...,Bk with |bi-bj|<=1 for every i, j. We extend this result in many directions.", "revisions": [ { "version": "v4", "updated": "2014-06-22T22:06:29.000Z" } ], "analyses": { "subjects": [ "05A18" ], "keywords": [ "block partitions", "real numbers", "empty set", "blocks b1" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.2452B" } } }