{ "id": "1308.2364", "version": "v1", "published": "2013-08-11T05:03:02.000Z", "updated": "2013-08-11T05:03:02.000Z", "title": "An upper bound for Davenport constant of finite groups", "authors": [ "Weidong Gao", "Yuanlin Li", "Jiangtao Peng" ], "comment": "arXiv admin note: text overlap with arXiv:1211.2614 by other authors", "categories": [ "math.NT" ], "abstract": "Let $G$ be a finite (not necessarily abelian) group and let $p=p(G)$ be the smallest prime number dividing $|G|$. We prove that $d(G)\\leq \\frac{|G|}{p}+9p^2-10p$, where $d(G)$ denotes the small Davenport constant of $G$ which is defined as the maximal integer $\\ell$ such that there is a sequence over $G$ of length $\\ell$ contains no nonempty one-product subsequence.", "revisions": [ { "version": "v1", "updated": "2013-08-11T05:03:02.000Z" } ], "analyses": { "subjects": [ "11B75" ], "keywords": [ "finite groups", "upper bound", "small davenport constant", "nonempty one-product subsequence", "smallest prime number dividing" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.2364G" } } }