{ "id": "1308.2268", "version": "v1", "published": "2013-08-10T02:34:14.000Z", "updated": "2013-08-10T02:34:14.000Z", "title": "Growth and integrability of Fourier transforms on Euclidean space", "authors": [ "William O. Bray" ], "categories": [ "math.CA" ], "abstract": "A fundamental theme in classical Fourier analysis relates smoothness properties of functions to the growth and/or integrability of their Fourier transform. By using a suitable class of $L^{p}-$multipliers, a rather general inequality controlling the size of Fourier transforms for large and small argument is proved. As consequences, quantitative Riemann-Lebesgue estimates are obtained and an integrability result for the Fourier transform is developed extending ideas used by Titchmarsh in the one dimensional setting.", "revisions": [ { "version": "v1", "updated": "2013-08-10T02:34:14.000Z" } ], "analyses": { "subjects": [ "42B10" ], "keywords": [ "fourier transform", "euclidean space", "integrability", "fourier analysis relates smoothness properties", "classical fourier analysis relates smoothness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.2268B" } } }