{ "id": "1308.1696", "version": "v1", "published": "2013-08-07T20:55:35.000Z", "updated": "2013-08-07T20:55:35.000Z", "title": "An Easton-like Theorem for Zermelo-Fraenkel Set Theory Without Choice (Preliminary Report)", "authors": [ "Anne Fernengel", "Peter Koepke" ], "categories": [ "math.LO" ], "abstract": "By Easton's theorem one can force the exponential function on regular cardinals to take rather arbitrary cardinal values provided monotonicity and Koenig's lemma are respected. In models without choice we employ a \"surjective\" version of the exponential function. We then prove a choiceless Easton's theorem: one can force the surjective exponential function on all infinite cardinals to take arbitrary cardinal values, provided monotonicity and Cantor's theorem are satisfied, irrespective of cofinalities.", "revisions": [ { "version": "v1", "updated": "2013-08-07T20:55:35.000Z" } ], "analyses": { "keywords": [ "zermelo-fraenkel set theory", "preliminary report", "easton-like theorem", "exponential function", "arbitrary cardinal values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.1696F" } } }