{ "id": "1308.1653", "version": "v2", "published": "2013-08-07T18:34:02.000Z", "updated": "2013-09-19T02:37:27.000Z", "title": "Maxima of the Q-index: graphs with bounded clique number", "authors": [ "Nair Maria Maia de Abreu", "Vladimir Nikiforov" ], "comment": "10 pages, corrected a typo", "journal": "Electronic J. Linear Algebra 23 (2012), 782-789", "categories": [ "math.CO" ], "abstract": "This paper gives a tight upper bound on the spectral radius of the signless Laplacian of graphs of given order and clique number. More precisely, let G be a graph of order n, let A be its adjacency matrix, and let D be the diagonal matrix of the row-sums of A. If G has clique number r, then the largest eigenvalue q(G) of the matrix Q=A+D satisfies q(G)<= 2(1-1/r)n. If G is a complete regular r-partite graph, then equality holds in the above inequality. This result confirms a conjecture of Hansen and Lucas.", "revisions": [ { "version": "v2", "updated": "2013-09-19T02:37:27.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "bounded clique number", "complete regular r-partite graph", "tight upper bound", "equality holds", "spectral radius" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1308.1653D" } } }