{ "id": "1307.8370", "version": "v1", "published": "2013-07-31T16:08:44.000Z", "updated": "2013-07-31T16:08:44.000Z", "title": "On trivialities of Chern classes", "authors": [ "Aniruddha C. Naolekar", "Ajay Singh Thakur" ], "comment": "11 Pages", "categories": [ "math.AT" ], "abstract": "A finite $CW$-complex $X$ is $C$-trivial if for every complex vector bundle $\\xi$ over $X$, the total Chern class $c(\\xi)=1$. In this note we completely determine when each of the following spaces are $C$-trivial: suspensions of stunted real projective spaces, suspensions of stunted complex projective spaces and suspensions of stunted quaternionic projective spaces.", "revisions": [ { "version": "v1", "updated": "2013-07-31T16:08:44.000Z" } ], "analyses": { "subjects": [ "57R20", "55R50", "57R22" ], "keywords": [ "chern classes", "trivialities", "complex vector bundle", "suspensions", "stunted complex projective spaces" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.8370N" } } }