{ "id": "1307.8310", "version": "v2", "published": "2013-07-31T13:13:36.000Z", "updated": "2015-04-20T19:13:29.000Z", "title": "Vector Bundles on the Moduli Stack of Elliptic Curves", "authors": [ "Lennart Meier" ], "comment": "26 pages", "journal": "J. Algebra 428 (2015), 425-456", "categories": [ "math.AG" ], "abstract": "We study vector bundles on the moduli stack of elliptic curves over a local ring R. If R is a field or a discrete valuation ring of (residue) characteristic not 2 or 3, all these vector bundles are sums of line bundles. For R the 3-local integers, we construct higher rank indecomposable vector bundles and give a classification of vector bundles that are iterated extensions of line bundles. For R the 2-local integers, we show that there are even indecomposable vector bundles of arbitrary high rank.", "revisions": [ { "version": "v1", "updated": "2013-07-31T13:13:36.000Z", "comment": "28 pages. Comments welcome", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-04-20T19:13:29.000Z" } ], "analyses": { "subjects": [ "14K10", "14H52", "14H60" ], "keywords": [ "elliptic curves", "moduli stack", "line bundles", "construct higher rank indecomposable vector", "higher rank indecomposable vector bundles" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.8310M" } } }