{ "id": "1307.8065", "version": "v2", "published": "2013-07-30T17:46:07.000Z", "updated": "2014-01-08T16:15:55.000Z", "title": "Biaxiality in the asymptotic analysis of a 2-D Landau-de Gennes model for liquid crystals", "authors": [ "Giacomo Canevari" ], "comment": "34 pages, 2 figures; typos corrected, minor changes in proofs. Results are unchanged", "categories": [ "math.AP" ], "abstract": "We consider the Landau-de Gennes variational problem on a bound\\-ed, two dimensional domain, subject to Dirichlet smooth boundary conditions. We prove that minimizers are maximally biaxial near the singularities, that is, their biaxiality parameter reaches the maximum value $1$. Moreover, we discuss the convergence of minimizers in the vanishing elastic constant limit. Our asymptotic analysis is performed in a general setting, which recovers the Landau-de Gennes problem as a specific case.", "revisions": [ { "version": "v2", "updated": "2014-01-08T16:15:55.000Z" } ], "analyses": { "subjects": [ "35J25", "35J61", "35B40", "35Q70" ], "keywords": [ "landau-de gennes model", "asymptotic analysis", "liquid crystals", "landau-de gennes variational problem", "dirichlet smooth boundary conditions" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.8065C" } } }