{ "id": "1307.8039", "version": "v2", "published": "2013-07-30T16:43:18.000Z", "updated": "2015-02-08T17:18:22.000Z", "title": "Sharp constant in Riemannian L^p-Gagliardo-Nirenberg inequalities", "authors": [ "Jurandir Ceccon", "Carlos Duran" ], "comment": "23 pages", "categories": [ "math.AP" ], "abstract": "Let (M,g) be a smooth compact Riemannian manifold of dimension n \\geq 2, 1 < p < n and 1 \\leq q < r < p^\\ast = \\frac{np}{n-p} be real parameters. This paper concerns to the validity of the optimal Gagliardo-Nirenberg inequality (\\int_M |u|^r\\; dv_g)^{\\frac{\\tau}{r \\theta}} \\leq (A_{opt} (\\int_M |\\nabla_g u|^p\\; dv_g)^{\\frac{\\tau}{p}} + B_{opt} (\\int_M |u|^p\\; dv_g)^{\\frac{\\tau}{p}}) (int_M |u|^q\\; dv_g)^{\\frac{\\tau(1 - \\theta)}{\\theta q}} \\; . This kind of inequality is studied in Chen and Sun (Nonlinear Analysis 72 (2010), pp. 3159-3172) where the authors established its validity when 2 < p < r < p^\\ast and (implicitly) \\tau = 2. Here we solve the case p \\geq r and introduce one more parameter 1 \\leq \\tau \\leq \\min\\{p,2\\}. Moreover, we prove the existence of extremal function for the optimal inequality above.", "revisions": [ { "version": "v1", "updated": "2013-07-30T16:43:18.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-08T17:18:22.000Z" } ], "analyses": { "keywords": [ "sharp constant", "smooth compact riemannian manifold", "optimal gagliardo-nirenberg inequality", "nonlinear analysis", "optimal inequality" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.8039C" } } }