{ "id": "1307.7837", "version": "v1", "published": "2013-07-30T06:38:41.000Z", "updated": "2013-07-30T06:38:41.000Z", "title": "Asymptotics of solutions to the Navier-Stokes system in exterior domains", "authors": [ "Dragos Iftimie", "Grzegorz Karch", "Christophe Lacave" ], "categories": [ "math.AP" ], "abstract": "We consider the incompressible Navier-Stokes equations with the Dirichlet boundary condition in an exterior domain of $\\mathbb{R}^n$ with $n\\geq2$. We compare the long-time behaviour of solutions to this initial-boundary value problem with the long-time behaviour of solutions of the analogous Cauchy problem in the whole space $\\mathbb{R}^n$. We find that the long-time asymptotics of solutions to both problems coincide either in the case of small initial data in the weak $L^{n}$-space or for a certain class of large initial data.", "revisions": [ { "version": "v1", "updated": "2013-07-30T06:38:41.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05", "35Q35" ], "keywords": [ "exterior domain", "navier-stokes system", "asymptotics", "long-time behaviour", "small initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.7837I" } } }