{ "id": "1307.7641", "version": "v2", "published": "2013-07-29T16:54:03.000Z", "updated": "2015-01-28T18:22:01.000Z", "title": "Norm forms for arbitrary number fields as products of linear polynomials", "authors": [ "Tim Browning", "Lilian Matthiesen" ], "comment": "71 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Let K/Q be a field extension of finite degree and let P(t) be a polynomial over Q that splits into linear factors over Q. We show that any smooth model of the affine variety defined by the equation N_{K/Q} (k) = P(t) satisfies the Hasse principle and weak approximation whenever the Brauer-Manin obstruction is empty. Our proof is based on a combination of methods from additive combinatorics due to Green-Tao and Green-Tao-Ziegler, together with an application of the descent theory of Colliot-Th\\'el\\`ene and Sansuc.", "revisions": [ { "version": "v1", "updated": "2013-07-29T16:54:03.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-28T18:22:01.000Z" } ], "analyses": { "keywords": [ "arbitrary number fields", "norm forms", "linear polynomials", "field extension", "brauer-manin obstruction" ], "note": { "typesetting": "TeX", "pages": 71, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.7641B" } } }