{ "id": "1307.7380", "version": "v1", "published": "2013-07-28T16:49:21.000Z", "updated": "2013-07-28T16:49:21.000Z", "title": "Jacobi polynomials and SU(2,2)", "authors": [ "E. Celeghini", "M. A. del Olmo", "M. A. Velasco" ], "comment": "18 pages, 2 figures", "categories": [ "math-ph", "math.GR", "math.MP", "quant-ph" ], "abstract": "A ladder structure of operators is presented for the Jacobi polynomials, J_n^(a,b)(x), with parameters n, a and b integers, showing that they are related to the unitary irreducible representation of SU(2,2) with quadratic Casimir C_SU(2,2)=-3/2. As they determine also a base of square-integrable functions, the universal enveloping algebra of su(2,2) is homomorphic to the space of linear operators acting on the L^2 functions defined on (-1,+1) x Z x Z/2.", "revisions": [ { "version": "v1", "updated": "2013-07-28T16:49:21.000Z" } ], "analyses": { "keywords": [ "jacobi polynomials", "linear operators", "ladder structure", "universal enveloping algebra", "quadratic casimir" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.7380C" } } }