{ "id": "1307.7017", "version": "v1", "published": "2013-07-26T12:37:56.000Z", "updated": "2013-07-26T12:37:56.000Z", "title": "An averaging theorem for FPU in the thermodynamic limit", "authors": [ "Alberto Maiocchi", "Dario Bambusi", "Andrea Carati" ], "categories": [ "math-ph", "math.MP" ], "abstract": "Consider an FPU chain composed of $N\\gg 1$ particles, and endow the phase space with the Gibbs measure corresponding to a small temperature $\\beta^{-1}$. Given a fixed $K0$) for initial data in a set of large measure. Furthermore, the time autocorrelation function of the energy of each packet does not decay significantly for times of order $\\beta$. The restrictions on the shape of the packets are very mild. All estimates are uniform in the number $N$ of particles and thus hold in the thermodynamic limit $N\\to\\infty$, $\\beta>0$.", "revisions": [ { "version": "v1", "updated": "2013-07-26T12:37:56.000Z" } ], "analyses": { "keywords": [ "thermodynamic limit", "averaging theorem", "time autocorrelation function", "adiabatic invariants", "fpu chain" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s10955-014-0958-2", "journal": "Journal of Statistical Physics", "year": 2014, "month": "Apr", "volume": 155, "number": 2, "pages": 300 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014JSP...155..300M" } } }