{ "id": "1307.6895", "version": "v1", "published": "2013-07-25T23:41:18.000Z", "updated": "2013-07-25T23:41:18.000Z", "title": "On the Schrödinger equation with singular potentials", "authors": [ "Jaime Angulo Pava", "Lucas C. F. Ferreira" ], "categories": [ "math.AP" ], "abstract": "We study the Cauchy problem for the non-linear Schr\\\"odinger equation with singular potentials. For point-mass potential and nonperiodic case, we prove existence and asymptotic stability of global solutions in weak-L^{p} spaces. Specific interest is give to the point-like $\\delta$ and $\\delta'$ impurity and for two $\\delta$-interactions in one dimension. We also consider the periodic case which is analyzed in a functional space based on Fourier transform and local-in-time well-posedness is proved.", "revisions": [ { "version": "v1", "updated": "2013-07-25T23:41:18.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A05", "35A07", "35C15", "35B40", "35B10" ], "keywords": [ "singular potentials", "schrödinger equation", "local-in-time well-posedness", "nonperiodic case", "cauchy problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.6895A" } } }