{ "id": "1307.6573", "version": "v2", "published": "2013-07-24T20:25:43.000Z", "updated": "2013-12-03T15:03:40.000Z", "title": "An elementary proof of Franks' lemma for geodesic flows", "authors": [ "Daniel Visscher" ], "categories": [ "math.DS" ], "abstract": "Given a Riemannian manifold $(M,g)$ and a geodesic $\\gamma$, the perpendicular part of the derivative of the geodesic flow $\\phi_g^t: SM \\rightarrow SM$ along $\\gamma$ is a linear symplectic map. We give an elementary proof of the following Franks' lemma, originally found in [G. Contreras and G. Paternain, 2002] and [G. Contreras, 2010]: this map can be perturbed freely within a neighborhood in $Sp(n)$ by a $C^2$-small perturbation of the metric $g$ that keeps $\\gamma$ a geodesic for the new metric. Moreover, the size of these perturbations is uniform over fixed length geodesics on the manifold. When $\\dim M \\geq 3$, the original metric must belong to a $C^2$--open and dense subset of metrics.", "revisions": [ { "version": "v2", "updated": "2013-12-03T15:03:40.000Z" } ], "analyses": { "keywords": [ "geodesic flow", "elementary proof", "linear symplectic map", "perpendicular part", "dense subset" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.6573V" } } }