{ "id": "1307.6316", "version": "v1", "published": "2013-07-24T07:56:04.000Z", "updated": "2013-07-24T07:56:04.000Z", "title": "On sumsets and convex hull", "authors": [ "Karoly Boroczky", "Francisco Santos", "Oriol Serra" ], "categories": [ "math.CO", "math.NT" ], "abstract": "One classical result of Freimann gives the optimal lower bound for the cardinality of A+A if A is a d-dimensional finite set in the Euclidean d-space. Matolcsi and Ruzsa have recently generalized this lower bound to |A+kB| if B is d-dimensional, and A is contained in the convex hull of B. We characterize the equality case of the Matolcsi-Ruzsa bound. The argument is based partially on understanding triangulations of polytopes.", "revisions": [ { "version": "v1", "updated": "2013-07-24T07:56:04.000Z" } ], "analyses": { "keywords": [ "convex hull", "optimal lower bound", "d-dimensional finite set", "matolcsi-ruzsa bound", "euclidean d-space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.6316B" } } }