{ "id": "1307.5920", "version": "v1", "published": "2013-07-23T01:19:39.000Z", "updated": "2013-07-23T01:19:39.000Z", "title": "Random iteration and projection method", "authors": [ "Krzysztof Leśniak" ], "comment": "4 figures", "categories": [ "math.DS" ], "abstract": "We show that under suitable conditions a random orbit generated by a system of nonexpansive maps recovers an invariant set via its omega-limit. In particular, this explains what happens to the Kaczmarz--von Neumann projection algorithm in the infeasible case, that is, when one deals with more than two affine varieties having empty intersection.", "revisions": [ { "version": "v1", "updated": "2013-07-23T01:19:39.000Z" } ], "analyses": { "keywords": [ "projection method", "random iteration", "kaczmarz-von neumann projection algorithm", "invariant set", "empty intersection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.5920L" } } }