{ "id": "1307.5645", "version": "v3", "published": "2013-07-22T10:13:39.000Z", "updated": "2016-09-01T08:21:24.000Z", "title": "Robinson-Schensted-Knuth algorithm, jeu de taquin and Kerov-Vershik measures on infinite tableaux", "authors": [ "Piotr Ĺšniady" ], "comment": "42 pages. Version 2: change of title, minor changes. Version 3: bibliography has been updated, the figures which in version 2 were not displayed properly have been repaired", "journal": "SIAM J. Discrete Math. 28 (2014), no. 2, 598-630", "doi": "10.1137/130930169", "categories": [ "math.CO", "math.PR" ], "abstract": "We investigate Robinson-Schensted-Knuth algorithm (RSK) and Sch\\\"utzenberger's jeu de taquin in the infinite setup. We show that the recording tableau in RSK defines an isomorphism of the following two dynamical systems: (i) a sequence of i.i.d. random letters equipped with Bernoulli shift, and (ii) a random infinite Young tableau (with the distribution given by Vershik-Kerov measure, corresponding to some Thoma character of the infinite symmetric group) equipped with jeu de taquin transformation. As a special case we recover the results on non-colliding random walks and multidimensional Pitman transform.", "revisions": [ { "version": "v2", "updated": "2013-12-19T12:33:53.000Z", "comment": "42 pages version 2: change of title, minor changes" }, { "version": "v3", "updated": "2016-09-01T08:21:24.000Z" } ], "analyses": { "subjects": [ "60C05", "05E10", "20C30", "20C32", "37A05" ], "keywords": [ "robinson-schensted-knuth algorithm", "kerov-vershik measures", "infinite tableaux", "random infinite young tableau", "multidimensional pitman transform" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.5645S" } } }