{ "id": "1307.5160", "version": "v3", "published": "2013-07-19T08:36:29.000Z", "updated": "2013-09-09T10:32:13.000Z", "title": "Killing vector fields of constant length on compact hypersurfaces", "authors": [ "Antonio J. Di Scala" ], "categories": [ "math.DG" ], "abstract": "We show that if a compact hypersurface $M \\subset \\mathbb{R}^{n+1}$, $n \\geq3$, admits a non zero Killing vector field $X$ of constant length then $n$ is even and $M$ is diffeomorphic to the unit hypersphere of $\\mathbb{R}^{n+1}$. Actually, we show that $M$ is a complex ellipsoid in $\\mathbb{C}^{N} = \\mathbb{R}^{n+1}$. As an application we give a simpler proof of a recent theorem due to S. Deshmukh \\cite{De12}.", "revisions": [ { "version": "v3", "updated": "2013-09-09T10:32:13.000Z" } ], "analyses": { "subjects": [ "53C20", "53C22", "53C25" ], "keywords": [ "constant length", "compact hypersurface", "non zero killing vector field", "unit hypersphere", "complex ellipsoid" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.5160D" } } }