{ "id": "1307.5078", "version": "v2", "published": "2013-07-18T20:45:08.000Z", "updated": "2013-07-24T14:54:18.000Z", "title": "Powers in Lucas Sequences via Galois Representations", "authors": [ "Jesse Silliman", "Isabel Vogt" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "Let $u_n$ be a nondegenerate Lucas sequence. We generalize the results of Bugeaud, Mignotte, and Siksek, 2006 to give a systematic approach towards the problem of determining all perfect powers in any particular Lucas sequence. We then prove a general bound on admissible prime powers in a Lucas sequence assuming the Frey-Mazur conjecture on isomorphic mod $p$ Galois representations of elliptic curves.", "revisions": [ { "version": "v2", "updated": "2013-07-24T14:54:18.000Z" } ], "analyses": { "keywords": [ "galois representations", "nondegenerate lucas sequence", "elliptic curves", "perfect powers", "general bound" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.5078S" } } }