{ "id": "1307.4482", "version": "v2", "published": "2013-07-17T01:48:23.000Z", "updated": "2013-07-27T05:03:16.000Z", "title": "Functional inequalities on path space over a non-compact Riemannian manifold", "authors": [ "Xin Chen", "Bo Wu" ], "categories": [ "math.PR" ], "abstract": "We prove the existence of the O-U Dirichlet form and the damped O-U Dirichlet form on path space over a general non-compact Riemannian manifold which is complete and stochastically complete. We show a weighted log-Sobolev inequality for the O-U Dirichlet form and the (standard) log-Sobolev inequality for the damped O-U Dirichlet form. In particular, the Poincar\\'e inequality (and the super Poincar\\'e inequality) can be established for the O-U Dirichlet form on path space over a class of Riemannian manifolds with unbounded Ricci curvatures. Moreover, we construct a large class of quasi-regular local Dirichlet forms with unbounded random diffusion coefficients on the path space over a general non-compact manifold.", "revisions": [ { "version": "v2", "updated": "2013-07-27T05:03:16.000Z" } ], "analyses": { "subjects": [ "58J65" ], "keywords": [ "path space", "functional inequalities", "damped o-u dirichlet form", "quasi-regular local dirichlet forms", "poincare inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.4482C" } } }