{ "id": "1307.4277", "version": "v1", "published": "2013-07-16T13:54:54.000Z", "updated": "2013-07-16T13:54:54.000Z", "title": "Characterization of derivations through their actions on certain elementary functions", "authors": [ "Eszter Gselmann" ], "comment": "9 pages", "categories": [ "math.CA" ], "abstract": "The main aim of this note is to provide characterization theorems concerning real derivations. Among others the following implication will be verified: Assume that $\\xi\\colon \\mathbb{R}\\to \\mathbb{R}$ is a given differentiable function and for the additive function $d\\colon \\mathbb{R}\\to \\mathbb{R}$, the mapping \\[ x\\longmapsto d(\\xi(x))-\\xi'(x)d(x) \\] is regular (e. g. measurable, continuous, locally bounded). Then $d$ is a sum of a derivation and a linear function.", "revisions": [ { "version": "v1", "updated": "2013-07-16T13:54:54.000Z" } ], "analyses": { "subjects": [ "39B82", "39B72" ], "keywords": [ "elementary functions", "characterization theorems concerning real derivations", "linear function", "main aim", "additive function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.4277G" } } }