{ "id": "1307.4261", "version": "v3", "published": "2013-07-16T12:49:19.000Z", "updated": "2014-03-05T01:28:51.000Z", "title": "Selmer groups and class groups", "authors": [ "Kestutis Cesnavicius" ], "comment": "17 pages; final version, to appear in Compositio Mathematica", "categories": [ "math.NT" ], "abstract": "Let $A$ be an abelian variety over a global field $K$ of characteristic $p \\ge 0$. If $A$ has nontrivial (resp. full) $K$-rational $l$-torsion for a prime $l \\neq p$, we exploit the fppf cohomological interpretation of the $l$-Selmer group $\\mathrm{Sel}_l A$ to bound $\\#\\mathrm{Sel}_l A$ from below (resp. above) in terms of the cardinality of the $l$-torsion subgroup of the ideal class group of $K$. Applied over families of finite extensions of $K$, the bounds relate the growth of Selmer groups and class groups. For function fields, this technique proves the unboundedness of $l$-ranks of class groups of quadratic extensions of every $K$ containing a fixed finite field $\\mathbb{F}_{p^n}$ (depending on $l$). For number fields, it suggests a new approach to the Iwasawa $\\mu = 0$ conjecture through inequalities, valid when $A(K)[l] \\neq 0$, between Iwasawa invariants governing the growth of Selmer groups and class groups in a $\\mathbb{Z}_l$-extension.", "revisions": [ { "version": "v3", "updated": "2014-03-05T01:28:51.000Z" } ], "analyses": { "subjects": [ "11G10", "11R23", "11R29", "11R58" ], "keywords": [ "selmer group", "ideal class group", "global field", "iwasawa invariants", "number fields" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.4261C" } } }