{ "id": "1307.3906", "version": "v1", "published": "2013-07-15T12:17:21.000Z", "updated": "2013-07-15T12:17:21.000Z", "title": "On a formula of T. Rivoal", "authors": [ "Jean-Paul Allouche" ], "journal": "Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013) 69--79", "categories": [ "math.NT" ], "abstract": "In an unpublished 2005 paper T. Rivoal proved a formula giving 4/pi as the infinite product of factors (1 + 1/(k+1)) to a power involving the integer part of the logarithm of k in base 2 and a 4-periodic sequence. We show how a lemma in a 1988 paper of J. Shallit and the author allows us to prove that formula, as well as a family of similar formulas involving occurrences of blocks of digits in the base-B expansion of the integer k, where B is an integer larger than 1.", "revisions": [ { "version": "v1", "updated": "2013-07-15T12:17:21.000Z" } ], "analyses": { "subjects": [ "11Y60", "11A63", "11A67" ], "keywords": [ "infinite product", "integer part", "similar formulas", "base-b expansion", "integer larger" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.3906A" } } }