{ "id": "1307.3623", "version": "v2", "published": "2013-07-13T07:44:26.000Z", "updated": "2013-07-16T01:41:13.000Z", "title": "The Yau-Tian-Donaldson Conjecture for general polarizations", "authors": [ "Toshiki Mabuchi" ], "categories": [ "math.DG" ], "abstract": "In this paper, assuming that a polarized algebraic manifold $(X,L)$ is strongly K-stable, we shall show that the polarization class $c_1(L)$ admits a constant scalar curvature Kaehler metric.", "revisions": [ { "version": "v2", "updated": "2013-07-16T01:41:13.000Z" } ], "analyses": { "subjects": [ "32Q26", "14L24", "53C25" ], "keywords": [ "yau-tian-donaldson conjecture", "general polarizations", "constant scalar curvature kaehler metric", "polarized algebraic manifold", "polarization class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.3623M" } } }