{ "id": "1307.3205", "version": "v2", "published": "2013-07-11T18:25:18.000Z", "updated": "2014-01-12T12:26:10.000Z", "title": "Arithmetic dynamics on smooth cubic surfaces", "authors": [ "Solomon Vishkautsan" ], "comment": "22 pages changes in v2: * major streamlining + many fixes to typos * correction to Corollary in Section 8", "journal": "New York J. Math. 20 (2014), 1--25, http://nyjm.albany.edu/j/2014/20-1.html", "categories": [ "math.NT", "math.AG", "math.DS" ], "abstract": "We study dynamical systems induced by birational automorphisms on smooth cubic surfaces defined over a number field $K$. In particular we are interested in the product of non-commuting birational Geiser involutions of the cubic surface. We present results describing the sets of $K$ and $\\bar{K}$-periodic points of the system, and give a necessary and sufficient condition for a dynamical local-global property called strong residual periodicity. Finally, we give a dynamical result relating to the Mordell--Weil problem on cubic surfaces.", "revisions": [ { "version": "v2", "updated": "2014-01-12T12:26:10.000Z" } ], "analyses": { "subjects": [ "37P35", "37P55", "37P05" ], "keywords": [ "arithmetic dynamics", "strong residual periodicity", "non-commuting birational geiser involutions", "number field", "smooth cubic surfaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.3205V" } } }