{ "id": "1307.3155", "version": "v2", "published": "2013-07-11T16:00:36.000Z", "updated": "2015-07-01T16:56:04.000Z", "title": "If $B$ and $f(B)$ are Brownian motions, then $f$ is affine", "authors": [ "Michael R. Tehranchi" ], "comment": "4 pages", "categories": [ "math.PR" ], "abstract": "It is shown that if the processes $B$ and $f(B)$ are both Brownian motions then $f$ must be an affine function. As a by-product of the proof, it is shown that the only functions which are solutions to both the Laplace equation and the eikonal equation are affine.", "revisions": [ { "version": "v1", "updated": "2013-07-11T16:00:36.000Z", "comment": "3 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-07-01T16:56:04.000Z" } ], "analyses": { "subjects": [ "60H30", "35C05" ], "keywords": [ "brownian motions", "affine function", "eikonal equation" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.3155T" } } }