{ "id": "1307.2401", "version": "v1", "published": "2013-07-09T11:07:03.000Z", "updated": "2013-07-09T11:07:03.000Z", "title": "On the Equivariant Lazard Ring and Tom Dieck's Equivariant Cobordism Ring", "authors": [ "C. L Liu" ], "categories": [ "math.AT", "math.AG" ], "abstract": "For a torus G of rank r = 1, we showed that the canonical ring homomorphism L_G \\to MU_G, where L_G is the equivariant Lazard ring and MU_G is the equivariant cobordism ring introduced by Tom Dieck, is surjective. We also showed that the completion map MU_G \\to \\hat{MU}_G = MU(BG) is injective. Moreover, we showed that the same results hold if we assume a certain algebraic property holds in L_G when r \\geq 2.", "revisions": [ { "version": "v1", "updated": "2013-07-09T11:07:03.000Z" } ], "analyses": { "keywords": [ "tom diecks equivariant cobordism ring", "equivariant lazard ring", "algebraic property holds", "results hold", "completion map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.2401L" } } }