{ "id": "1307.1959", "version": "v2", "published": "2013-07-08T06:51:15.000Z", "updated": "2013-07-09T07:31:18.000Z", "title": "Strong K-stability and asymptotic Chow-stability", "authors": [ "Toshiki Mabuchi", "Yasufumi Nitta" ], "categories": [ "math.DG" ], "abstract": "For a polarized algebraic manifold $(X,L)$, let $T$ be an algebraic torus in the group of all holomorphic automorphisms of $X$. Then strong relative K-stability will be shown to imply asymptotic relative Chow-stability. In particular, by taking $T$ to be trivial, we see that asymptotic Chow-stability follows from strong K-stability.", "revisions": [ { "version": "v2", "updated": "2013-07-09T07:31:18.000Z" } ], "analyses": { "subjects": [ "32Q26", "14L24", "53C25" ], "keywords": [ "asymptotic chow-stability", "strong k-stability", "algebraic torus", "polarized algebraic manifold", "holomorphic automorphisms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1959M" } } }