{ "id": "1307.1957", "version": "v4", "published": "2013-07-08T06:30:44.000Z", "updated": "2013-07-16T02:48:01.000Z", "title": "The Donaldson-Futaki invariant for sequences of test configurations", "authors": [ "Toshiki Mabuchi" ], "categories": [ "math.DG" ], "abstract": "In this note, given a polarized algebraic manifold $(X,L)$, we define the Donaldson-Futaki invariant for a sequence of test configurations for $(X,L)$ with exponents tending to infinity. This then allows us to define a strong version of K-stability or K-semistability for $(X,L)$. In particular, $(X,L)$ will be shown to be K-semistable in this strong sense if the polarization class $c_1(L)$ admits a constant scalar curvature Kaehler metric.", "revisions": [ { "version": "v4", "updated": "2013-07-16T02:48:01.000Z" } ], "analyses": { "subjects": [ "32Q26", "14L24", "53C25" ], "keywords": [ "test configurations", "donaldson-futaki invariant", "constant scalar curvature kaehler metric", "strong version", "polarized algebraic manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1957M" } } }