{ "id": "1307.1840", "version": "v1", "published": "2013-07-07T09:00:05.000Z", "updated": "2013-07-07T09:00:05.000Z", "title": "Primality test for numbers of the form $(2p)^{2^n}+1$", "authors": [ "Yingpu Deng", "Dandan Huang" ], "comment": "15 pages, 2 tables", "categories": [ "math.NT" ], "abstract": "We describe a primality test for number $M=(2p)^{2^n}+1$ with odd prime $p$ and positive integer $n$. And we also give the special primality criteria for all odd primes $p$ not exceeding 19. All these primality tests run in polynomial time in log$_{2}(M)$. A certain special $2p$-th reciprocity law is used to deduce our result.", "revisions": [ { "version": "v1", "updated": "2013-07-07T09:00:05.000Z" } ], "analyses": { "keywords": [ "odd prime", "primality tests run", "th reciprocity law", "special primality criteria", "polynomial time" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1307.1840D" } } }